Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytometry A ; 101(3): 237-253, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33840138

RESUMO

As the size and complexity of high-dimensional (HD) cytometry data continue to expand, comprehensive, scalable, and methodical computational analysis approaches are essential. Yet, contemporary clustering and dimensionality reduction tools alone are insufficient to analyze or reproduce analyses across large numbers of samples, batches, or experiments. Moreover, approaches that allow for the integration of data across batches or experiments are not well incorporated into computational toolkits to allow for streamlined workflows. Here we present Spectre, an R package that enables comprehensive end-to-end integration and analysis of HD cytometry data from different batches or experiments. Spectre streamlines the analytical stages of raw data pre-processing, batch alignment, data integration, clustering, dimensionality reduction, visualization, and population labelling, as well as quantitative and statistical analysis. Critically, the fundamental data structures used within Spectre, along with the implementation of machine learning classifiers, allow for the scalable analysis of very large HD datasets, generated by flow cytometry, mass cytometry, or spectral cytometry. Using open and flexible data structures, Spectre can also be used to analyze data generated by single-cell RNA sequencing or HD imaging technologies, such as Imaging Mass Cytometry. The simple, clear, and modular design of analysis workflows allow these tools to be used by bioinformaticians and laboratory scientists alike. Spectre is available as an R package or Docker container. R code is available on Github (https://github.com/immunedynamics/spectre).


Assuntos
Algoritmos , Análise de Célula Única , Análise por Conglomerados , Citometria de Fluxo/métodos , Software
2.
Immunol Cell Biol ; 99(7): 680-696, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33797774

RESUMO

High-dimensional cytometry represents an exciting new era of immunology research, enabling the discovery of new cells and prediction of patient responses to therapy. A plethora of analysis and visualization tools and programs are now available for both new and experienced users; however, the transition from low- to high-dimensional cytometry requires a change in the way users think about experimental design and data analysis. Data from high-dimensional cytometry experiments are often underutilized, because of both the size of the data and the number of possible combinations of markers, as well as to a lack of understanding of the processes required to generate meaningful data. In this article, we explain the concepts behind designing high-dimensional cytometry experiments and provide considerations for new and experienced users to design and carry out high-dimensional experiments to maximize quality data collection.


Assuntos
Citometria de Fluxo , Humanos
3.
Cytometry A ; 97(11): 1165-1179, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32799382

RESUMO

In conventional fluorescence cytometry, each fluorophore present in a panel is measured in a target detector, through the use of wide band-pass optical filters. In contrast, spectral cytometry uses a large number of detectors with narrow band-pass filters to measure a fluorophore's signal across the spectrum, creating a more detailed fluorescent signature for each fluorophore. The spectral approach shows promise in adding flexibility to panel design and improving the measurement of fluorescent signal. However, few comparisons between conventional and spectral systems have been reported to date. We therefore sought to compare a modern conventional cytometry system with a modern spectral system, and to assess the quality of resulting datasets from the point of view of a flow cytometry user. Signal intensity, spread, and resolution were compared between the systems. Subsequently, the different methods of separating fluorophore signals were compared, where compensation mathematically separates multiple overlapping fluorophores and unmixing relies on creating a detailed fluorescent signature across the spectrum to separate the fluorophores. Within the spectral data set, signal spread and resolution were comparable between compensation and unmixing. However, for some highly overlapping fluorophores, unmixing resolved the two fluorescence signals where compensation did not. Finally, data from mid- to large-size panels were acquired and were found to have comparable resolution for many fluorophores on both instruments, but reduced levels of spreading error on our spectral system improved signal resolution for a number of fluorophores, compared with our conventional system. Furthermore, autofluorescence extraction on the spectral system allowed for greater population resolution in highly autofluorescent samples. Overall, the implementation of a spectral cytometry approach resulted in data that are comparable to that generated on conventional systems, with a number of potential advantages afforded by the larger number of detectors, and the integration of the spectral unmixing approach. © 2020 International Society for Advancement of Cytometry.


Assuntos
Corantes Fluorescentes , Viroses , Citometria de Fluxo , Humanos
4.
PLoS Pathog ; 14(4): e1006999, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29709039

RESUMO

Varicella zoster virus (VZV) is a ubiquitous human alphaherpesvirus, responsible for varicella upon primary infection and herpes zoster following reactivation from latency. To establish lifelong infection, VZV employs strategies to evade and manipulate the immune system to its advantage in disseminating virus. As innate lymphocytes, natural killer (NK) cells are part of the early immune response to infection, and have been implicated in controlling VZV infection in patients. Understanding of how VZV directly interacts with NK cells, however, has not been investigated in detail. In this study, we provide the first evidence that VZV is capable of infecting human NK cells from peripheral blood in vitro. VZV infection of NK cells is productive, supporting the full kinetic cascade of viral gene expression and producing new infectious virus which was transmitted to epithelial cells in culture. We determined by flow cytometry that NK cell infection with VZV was not only preferential for the mature CD56dim NK cell subset, but also drove acquisition of the terminally-differentiated maturity marker CD57. Interpretation of high dimensional flow cytometry data with tSNE analysis revealed that culture of NK cells with VZV also induced a potent loss of expression of the low-affinity IgG Fc receptor CD16 on the cell surface. Notably, VZV infection of NK cells upregulated surface expression of chemokine receptors associated with trafficking to the skin -a crucial site in VZV disease where highly infectious lesions develop. We demonstrate that VZV actively manipulates the NK cell phenotype through productive infection, and propose a potential role for NK cells in VZV pathogenesis.


Assuntos
Herpesvirus Humano 3/patogenicidade , Células Matadoras Naturais/patologia , Pele/patologia , Linfócitos T/patologia , Infecção pelo Vírus da Varicela-Zoster/patologia , Latência Viral , Replicação Viral , Antígenos CD57/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Fenótipo , Pele/imunologia , Pele/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia
5.
Curr Protoc Immunol ; 119: 5.8.1-5.8.38, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091263

RESUMO

The immune system consists of a complex network of cells, all expressing a wide range of surface and/or intracellular proteins. Using flow cytometry, these cells can be analyzed by labeling with fluorophore-conjugated antibodies. The recent expansion of fluorescence flow cytometry technology, in conjunction with the ever-expanding understanding of the complexity of the immune system, has led to the generation of larger high-dimensional fluorescence flow cytometry panels. However, as panel size and complexity increases, so too does the difficulty involved in constructing high-quality panels, in addition to the challenges of analyzing such high-dimensional datasets. As such, this unit seeks to review the key principles involved in building high-dimensional panels, as well as to guide users through the process of building and analyzing quality panels. Here, cytometer configuration, fluorophore brightness, spreading error, antigen density, choosing the best conjugates, titration, optimization, and data analysis will all be addressed. © 2017 by John Wiley & Sons, Inc.


Assuntos
Anticorpos/metabolismo , Citometria de Fluxo/métodos , Corantes Fluorescentes , Lasers/estatística & dados numéricos , Análise de Célula Única , Animais , Antígenos/imunologia , Antígenos/metabolismo , Conjuntos de Dados como Assunto , Citometria de Fluxo/instrumentação , Fluorescência , Corantes Fluorescentes/química , Humanos
6.
Cell Immunol ; 291(1-2): 49-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25086710

RESUMO

Over the last three decades it has become increasingly clear that monocytes, originally thought to have fixed, stereotypic responses to foreign stimuli, mediate exquisitely balanced protective and pathogenic roles in disease and immunity. This balance is crucial in core functional organs, such as the central nervous system (CNS), where minor changes in neuronal microenvironments and the production of immune factors can result in significant disease with fatal consequences or permanent neurological sequelae. Viral encephalitis and multiple sclerosis are examples of important human diseases in which the pathogenic contribution of monocytes recruited from the bone marrow plays a critical role in the clinical expression of disease, as they differentiate into macrophage or dendritic cells in the CNS to carry out effector functions. While antigen-specific lymphocyte populations are central to the adaptive immune response in both cases, in viral encephalitis a prominent macrophage infiltration may mediate immunopathological damage, seizure induction, and death. However, the autoimmune response to non-replicating, non-infectious, but abundant, self antigen has a different disease progression, associated with differentiation of significant numbers of infiltrating monocytes into dendritic cells in the CNS. Whilst a predominant presence of macrophages or dendritic cells in the inflamed CNS in viral encephalitis or multiple sclerosis is well described, the way in which the inflamed CNS mobilizes monocytes in the bone marrow to migrate to the CNS and the key drivers that lead to these specific differentiation pathways in vivo are not well understood. Here we review the current understanding of factors facilitating inflammatory monocyte generation, migration and entry into the brain, as well as their differentiation towards macrophages or dendritic cells in viral and autoimmune disease in relation to their respective disease outcomes.


Assuntos
Diferenciação Celular/imunologia , Movimento Celular/imunologia , Encefalite/imunologia , Inflamação/imunologia , Monócitos/imunologia , Animais , Antígenos Ly/imunologia , Encefalite/patologia , Humanos , Receptores de Lipopolissacarídeos/imunologia , Camundongos , Monócitos/citologia
7.
Indian J Med Res ; 138(5): 632-47, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24434318

RESUMO

Mosquito-borne flaviviruses are a major current and emerging threat, affecting millions of people worldwide. Global climate change, combined with increasing proximity of humans to animals and mosquito vectors by expansion into natural habitats, coupled with the increase in international travel, have resulted in significant spread and concomitant increase in the incidence of infection and severe disease. Although neuroinvasive disease has been well described for some viral infections such as Japanese Encephalitis virus (JEV) and West Nile virus (WNV), others such as dengue virus (DENV) have recently displayed an emerging pattern of neuroinvasive disease, distinct from the previously observed, systemically-induced encephalomyelopathy. In this setting, the immune response is a crucial component of host defence, in preventing viral dissemination and invasion of the central nervous system (CNS). However, subversion of the anti-viral activities of macrophages by flaviviruses can facilitate viral replication and spread, enhancing the intensity of immune responses, leading to severe immune-mediated disease which may be further exacerbated during the subsequent infection with some flaviviruses. Furthermore, in the CNS myeloid cells may be responsible for inducing specific inflammatory changes, which can lead to significant pathological damage during encephalitis. The interaction of virus and cells of the myeloid lineage is complex, and this interaction is likely responsible at least in part, for crucial differences between viral clearance and pathology. Recent studies on the role of myeloid cells in innate immunity and viral control, and the mechanisms of evasion and subversion used by flaviviruses are rapidly advancing our understanding of the immunopathological mechanisms involved in flavivirus encephalitis and will lead to the development of therapeutic strategies previously not considered.


Assuntos
Encefalite/imunologia , Infecções por Flavivirus/imunologia , Imunidade Inata , Macrófagos/imunologia , Animais , Vírus da Dengue/imunologia , Vírus da Dengue/patogenicidade , Encefalite/virologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Flavivirus/imunologia , Flavivirus/patogenicidade , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Humanos , Células Mieloides/imunologia , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/patogenicidade
8.
J Neuroinflammation ; 9: 246, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23111065

RESUMO

Infiltration of Ly6C(hi) monocytes from the blood is a hallmark of viral encephalitis. In mice with lethal encephalitis caused by West Nile virus (WNV), an emerging neurotropic flavivirus, inhibition of Ly6C(hi) monocyte trafficking into the brain by anti-very late antigen (VLA)-4 integrin antibody blockade at the time of first weight loss and leukocyte influx resulted in long-term survival of up to 60% of infected mice, with subsequent sterilizing immunity. This treatment had no effect on viral titers but appeared to be due to inhibition of Ly6C(hi) macrophage immigration. Although macrophages isolated from the infected brain induced WNV-specific CD4(+) T-cell proliferation, T cells did not directly contribute to pathology, but are likely to be important in viral control, as antibody-mediated T-cell depletion could not reproduce the therapeutic benefit of anti-VLA-4. Instead, 70% of infiltrating inflammatory monocyte-derived macrophages were found to be making nitric oxide (NO). Furthermore, aminoguanidine-mediated inhibition of induced NO synthase activity in infiltrating macrophages significantly prolonged survival, indicating involvement of NO in the immunopathology. These data show for the first time the therapeutic effects of temporally targeting pathogenic NO-producing macrophages during neurotropic viral encephalitis.


Assuntos
Integrina alfa4beta1/imunologia , Integrina alfa4beta1/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Febre do Nilo Ocidental , Animais , Antígenos CD/metabolismo , Encéfalo/patologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Viral da Expressão Gênica/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Integrinas/genética , Integrinas/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/imunologia , Óxido Nítrico Sintase Tipo II , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/metabolismo , Febre do Nilo Ocidental/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...